Paradigm Free Mapping: Detection and Characterization of Single Trial fMRI BOLD Responses without Prior Stimulus Information

نویسنده

  • César Caballero Gaudes
چکیده

The increased contrast to noise ratio available at Ultrahigh (7T) Magnetic Resonance Imaging (MRI) allows mapping in space and time the brain’s response to single trial events with functional MRI (fMRI) based on the Blood Oxygenation Level Dependent (BOLD) contrast. This thesis primarily concerns with the development of techniques to detect and characterize single trial event-related BOLD responses without prior paradigm information, Paradigm Free Mapping, and assess variations in BOLD sensitivity across brain regions at high field fMRI. Based on a linear haemodynamic response model, Paradigm Free Mapping (PFM) techniques rely on the deconvolution of the neuronal-related signal driving the BOLD effect using regularized least squares estimators. The first approach, named PFM, builds on the ridge regression estimator and spatio-temporal t-statistics to detect statistically significant changes in the deconvolved fMRI signal. The second method, Sparse PFM, benefits from subset selection features of the LASSO and Dantzig Selector estimators that automatically detect the single trial BOLD responses by promoting a sparse deconvolution of the signal. The third technique, Multicomponent PFM, exploits further the benefits of sparse estimation to decompose the fMRI signal into a haemodynamical component and a baseline component using the morphological component analysis algorithm. These techniques were evaluated in simulations and experimental fMRI datasets, and the results were compared with well-established fMRI analysis methods. In particular, the methods developed here enabled the detection of single trial BOLD responses to visually-cued and self-paced finger tapping responses without prior information of the events. The potential application of Sparse PFM to identify interictal discharges in idiopathic generalized epilepsy was also investigated. Furthermore, Multicomponent PFM allowed us to extract cardiac and respiratory fluctuations of the signal without the need of physiological monitoring. To sum up, this work demonstrates the feasibility to do single trial fMRI analysis without prior stimulus or physiological information using PFM techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Paradigm free mapping with sparse regression automatically detects single-trial functional magnetic resonance imaging blood oxygenation level dependent responses.

The ability to detect single trial responses in functional magnetic resonance imaging (fMRI) studies is essential, particularly if investigating learning or adaptation processes or unpredictable events. We recently introduced paradigm free mapping (PFM), an analysis method that detects single trial blood oxygenation level dependent (BOLD) responses without specifying prior information on the ti...

متن کامل

Semiparametric Paradigm Free Mapping: Automatic detection and characterization of fMRI BOLD responses and physiological fluctuations without prior information

Introduction: In recent work we showed that by means of sparse estimation techniques the spatial and temporal evolution of single-trial BOLD responses can be automatically detected without any prior knowledge of the stimulus timing and without thresholding: paradigm free mapping (PFM) [1]. However, fMRI time series also contain physiological and instrumental fluctuations which can hinder the de...

متن کامل

Event-related fMRI of tasks involving brief motion.

The assessment of brain function by blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) for tasks involving motion near the field of view is compromised by artifacts arising from the motion. The aim of this study is to demonstrate that these artifacts can be reduced by acquiring the average response from a brief stimulus (a "single-trial," or "event-related," p...

متن کامل

Assessing the spatiotemporal evolution of neuronal activation with single-trial event-related potentials and functional MRI.

The brain acts as an integrated information processing system, which methods in cognitive neuroscience have so far depicted in a fragmented fashion. Here, we propose a simple and robust way to integrate functional MRI (fMRI) with single trial event-related potentials (ERP) to provide a more complete spatiotemporal characterization of evoked responses in the human brain. The idea behind the appr...

متن کامل

Spatially Extended fMRI Signal Response to Stimulus in Non-Functionally Relevant Regions of the Human Brain: Preliminary Results

The blood-oxygenation level dependent (BOLD) haemodynamic response function (HDR) in functional magnetic resonance imaging (fMRI) is a delayed and indirect marker of brain activity. In this single case study a small BOLD response synchronised with the stimulus paradigm is found globally, i.e. in all areas outside those of expected activation in a single subject study. The nature of the global r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016